Los fotones

Los fotones fueron denominados cuantos de luz por Einstein

El fotón fue llamado originalmente por Albert Einstein "cuanto de luz”.

El nombre moderno “fotón” proviene de la palabra griega que significa luz.

El nombre de fotón fue acuñado en 1926 por el físicoquímico estadounidense Gilbert Newton Lewis y adoptado enseguida por la mayoría de los científicos. Pulse en la imagen para leer más acerca de Gilbert Lewis.

En el siglo XVII, Isaac Newton se defendió teoría de que la luz son partículas. En esos mismos años, Huygens y Hooke (combativos rivales de Newton) apoyaron la hipótesis de que la luz es una onda. Ambas teorías aportaban experimentos que corroboraban el modelo.

La idea de la luz como partícula retornó con el concepto moderno de fotón, que fue desarrollado gradualmente entre 1905 y 1917 por Albert Einstein apoyándose en trabajos anteriores de Planck quien introdujo el concepto de cuanto.

Gilbert Lewis
Gilbert N. Lewis (1875-1946)

 

Es la partícula portadora de todas las formas de radiación electromagnética, incluyendo a los rayos gamma, los rayos X, la luz ultravioleta, la luz visible, la luz infrarroja, las microondas, y las ondas de radio.
El fotón tiene masa cero y viaja en el vacío con una velocidad constante c.

Como todos los cuantos, el fotón presenta tanto propiedades corpusculares como ondulatorias ("dualidad onda-corpúsculo"). Se comporta como una onda en algunos fenómenos como la refracción que tiene lugar en una lente; o como una partícula cuando interacciona con la materia para transferir una cantidad fija de energía.

Fotones

Para la luz visible, la energía portada por un fotón es de alrededor de 4×10–19 julios; esta energía es suficiente para excitar un ojo y dar lugar a la visión.

Además de energía, los fotones llevan también asociada una cantidad de movimiento o momento lineal, y tienen una polarización. Siguen las leyes de la mecánica cuántica, lo que significa que a menudo estas propiedades no tienen un valor bien definido para un fotón dado. En su lugar se habla de las probabilidades de que tenga una cierta polarización, posición, o cantidad de movimiento.

Por ejemplo, aunque un fotón puede excitar a una molécula, a menudo es imposible predecir cuál será la molécula excitada.
La descripción anterior de un fotón como un portador de radiación electromagnética es utilizada con frecuencia por los físicos. Sin embargo, en física teórica, un fotón puede considerarse como un mediador para cualquier tipo de interacción electromagnética.
Fotones



Con el modelo de fotón como partícula podían explicarse observaciones experimentales que no encajaban en el modelo ondulatorio clásico de la luz. En particular, explicaba cómo la energía de la luz dependía de la frecuencia (dependencia observada en el efecto fotoeléctrico) y la capacidad de la materia y la radiación electromagnética para permanecer en equilibrio térmico.

El concepto de fotón ha llevado a avances muy importantes en física teórica y experimental, tales como la teoría cuántica de campos y a inventos como el láser.

De acuerdo con el modelo estándar de física de partículas los fotones son los responsables de producir todos los campos eléctricos y magnéticos; y, a su vez, son el resultado de que las leyes físicas tengan cierta simetría en todos los puntos del espacio-tiempo.

Las propiedades intrínsecas de los fotones (carga eléctrica, masa invariante y espín) están determinadas por las propiedades de la simetría de Gauge.
Los fotones se aplican a muchas áreas, como la fotoquímica, el microscopio fotónico y la medición de distancias moleculares. Incluso se los ha estudiado como componentes de computadoras cuánticas y en aplicaciones sofisticadas de comunicación óptica como por ejemplo en criptografía cuántica.

Ir a la página inicial